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A general second-order accurate method for solving the combined
potential and circuit equations in a one-dimensional electrostatic
bounded plasma PIC simulation is presented. The boundary conditions
include surface charge on the electrodes, which are connected to a
series RLC circuit with driving terms V(f) or /(). The solution is
obtained for planar, cylindrical, and spherical electrodes, The resultis a
tridiagonal matrix which is readily solved using well-known methods.
The method is implemented in the codes PDP1 {plasma device
planar 1D), PDC1 {cylindrical), and PDS1 (spherical). © 1993 academic

Press, Inc.

L. INTRODUCTION

A comprehensive review of the considerations involved in
bounded plasma particle simulation is presented by W. S.
Lawson [1]. Lawson presents a method for solving the
circuit equation which is second-order accurate when
Ar*/LC <1 and R 4t/L <1 and is stable for Ar*/LC < 2 and
R 4¢/L <2, Lawson’s method is first-order accurate, with
some modifications to improve the accuracy, when L — 0
and the external circuit solution is no longer known at the
same time as the charge density of the plasma. In addition,
Lawson proposes a second-order accurate method for an
RC external circuit. We describe a similar method which we
extend to handle all variations of voltage and current driven
series RLC circuits as well as solving the circuit equations
simultaneously (in phase) with the plasma Poisson equa-
tion.

In [1, 2] the boundary conditions are decoupled from the
potential equation and a first-order circuit solution is used
when the inductance is zero. The scheme is self-consistent
when L is non-zero and the applied (driving) potential is
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small compared to the space-charge potential across the
system. These conditions are violated for a large class of
problems, including capacitively coupled R¥ discharges and
plasma immersion ion implantation malterials processing
(L =R=0and C — o), therefore, an extension of Lawson’s
method is desired.

2, POTENTIAL EQUATION

The configuration for one-dimensional bounded plasma
systems is shown in Fig. 1. The current in the external cir-
cuit interacts with the plasma current via surface charge on
the electrodes. Similarly, the potential within the plasma
region is affected by the distribution and motion of space
charge, the electrode surface charge, and the current in the
external circuit. Thus, we seek a simultaneous solution for
the potential and circuit equations.

The boundary conditions for the potential equation are
obtained by applying Gauss’ law to the system [1],

Ao . +A o

0, (1)
[+

§SE.ds=jyf;-dV+

where the surface S encloses the plasma and electrodes. A
refers to the surface area of the left electrode, 4 _ to the right
electrode, and ¢ is the surface charge on the respective elec-
trode. Wote that p has units of charge/volume and ¢ has
units of charge/area. Equation (1) is a statement of Gauss’
law; the first part reflects the assumption of an ideal conduc-
tor connecting the electrodes to the external circuit elements
and the second part expresses conservation of charge in the
system.
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FIG. 1. One-dimensional configuration with series RLC circuit and
voltage/current source. In these coordinates, the particles are charge sheets
with motion in the r-direction. For planar coordinates, r — x.

Applying Gauss’ law about each node of the gridded
system and using the definition of potential, we obtain
planar

G 20,4+, p

Aax? P (2a)
cylindrical
Fra1n@pe1 =284 1y 0@y = — 2 irz pis (2b)
and spherical
e @ = p ) @+ @,
- _Q’Mn (2¢)

3e s

In the cylindrical and spherical forms, r;, ;,, =#; + Ar/2. For
all Eqgs. (2), j=1,2, .., nc—1, where nc is the number of
cells in the gridded space. These results are equivalent to
the flux-conserving method of Birdsall and Langdon [27].
The planar and cylindrical results of Eq. (2) can also be
obtained by applying a central difference to the Poisson
equation; the finite difference result is different in spherical
coordinates.
For a one-dimensional system, the boundary conditions
can be written
$,.=0 (3)

ne

and

Eo=a,/e 4)

Equation (3) fixes a reference potential for the system
withouot impiying a grounded electrode. For the cylindrical
and spherical models the inner electrode is driven. The outer
electrode serves as the reference potential for the system
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even when the inner electrode is not present. Equation (4)
can be written at one-half grid cell from the boundary,
in comjunction with a central difference applied to the
definition of potential, to obtain

planar

)

1 Ax
Em:_Ax 'l=;(0+ +Po’é_), (5a)

cylindrical

D,—d, 1 ro P ra
e (s 2 (e D

and spherical

@, -, | rg “Po rg
E]',Q:—:_(U S +—=\rp—— . (SC)
Ar AN ri, 3 12 i

Equations (2) and the boundary conditions for the
gridded system are written in a general matrix form,

by ¢, O - . . B
a, b, ¢ O
0 a, by ¢ 0
am:'—2 ne—12 Coue 2
L am‘.—l bnr—lJ
[ &, W ‘ (d, )
@, d
QZ d2
x =f (6)
czsn'c—2 dnc72
k_@nrflJ Ldm-—lj

The superscript indicates the quantity is evaluated at time 1.
The matrix elements in planar coordinates are

a=1 j=12,.,nc—1;
b= —1, b= -2, j: 19 29 vy BC— 15
0 I ‘ (7}
Cj:I‘-‘ 150, 1,...,nC—2;
' ph .
do—'A—jcﬁ-E, dj=P,-a J=142 . nc—1

[ = —Ax%e,
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The matrix elements in cylindrical coordinates are

G=r_pn, =12, .,nc—-1

bo= —rip, b= =2r, j=12,.,0n-1;
=rivip, =01, ., 00—2; (8}
~ ot P 2
do 6’_'_2}‘ + EZ; ( ilz rD]’

di=rip;, j=12,.,nc—1;
= —Aar¥e
The matrix elements in spherical coordinates are

r? =12 . ,nc—1,

G=r_ s
- 2 - 2 2 L .
bo= —rip bi=—(ri_ip+ri1p) J=12 . nc—1;
—_ 2 s .
=1l J=01 ., nc—2

9)
dy= 3013+ plirt 1),

dj=(rf+1,2—rj3&”2)pj’., j=1,2, ., nc—1;

f= —A4r/3e.

When the center conductor is not present in the curvi-
linear models, the boundary conditions must be modified.
There can be no return current, so the boundary conditions
simplify to fixing a reference potential (e.g., @,,=0) and
£, =0. The only modifications this imposes on our previous
solution are the removal of the center electrode surface
charge and fixing a reference potential. From Gauss’ law,
the electric field at the origin must be zero in one dimension.
Integrating Gauss’ law from the origin to r=r,, with
6, =0, we obtain the modified form of Eqgs. (5) for the
hollow cylindrical system [2, Section 14-107,

d,—d, 1
E1/2=¥=E(po )

ar ?"1/2 (10}

The coefficients are still given by Egs. (8), with the
modification that

Po
do = EI ri,z.

(11)

The modification of Egs. {9) for removal of the center
electrode in the spherical system is, similarly,

(12)

PR S 1
do=poris.
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3. CIrRCUIT

The external circuit is coupled to Eqs. (6)-(9) through
conservation of charge at each wall,

AAU:Qconv+AQ’ (13)
where ¢, is the charge deposited by the convection (par-
ticle) current and 4@ is the charge deposited by the external
circuit current, both over some interval in time. Equa-
tion {13) is applied at the positively biased electrode as
shown in Fig. 1, guaranteeing conservation of charge at all
times. The same logic can also be applied to the other elec-
trode; however, the surface charge on the second clectrode
is determined readily from Eq. {1) when the first surface
charge is known. The charge conservation equation
becomes

::OI'IV + Ql _ Ql_dl
A 3

O" — O_r—A.f -+

{14)

where Q is the charge on one plate of the external circuit
capacitor. An alternate method of coupling the circuit to
the potential matrix is applying continuity of current
{Kirchhoff’s current law) at the boundary [2, Section
16-91,

do I

—=J v T T
at con +A

{15)
where J,.,, is the plasma convection current at the elec-
trode. The methods are equivalent when a first-order back-
ward difference is used for do/0r and I=8Q/0t. Since Q.
is in general a noisy quantity in a particle simulation, any
other quantity in Eqs. (13) and (15) will contain similar
noise. Thus Eq. (13) causes the walil charge o to be noisy as
might be expected, because the capacitor charge reacts to
the particle convection current only through the wall
charge; ie., particles absorbed by the wall contribute
immedialely to o, but the charge drains slowly to the
capacitor through currents. It can be shown that Eq. (15)
results in the convection current being absorbed gradually
into o, so that the noise is induced in the capacitor charge
QO (and consequently in the external current 7) to satisfy
conservation of charge. Therefore we use the conservation
of charge method of Eq. (13).

3.1. General Series RLC Circuit

Four cases cover the full range of external circuit
parameters. For the general voltage-driven series RLC cir-
cuit, the capacitor charge O is advanced using Kirchoff’s
voltage law,

L—+R—+==V{1)+ D, — P,
dr? dt t) °

4’0 a0 % (16)
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The polarity of the source and resultant positive current
are shown in Fig. 1. The general circuit equation is finite
differenced using the second-order backward Euler
representation of the first derivative,

dQ r_3Qr74Qr_dl+Qr-2d’
(dt) B 24¢ ’ (17)
and the second derivative,
(@)‘ _3(dQydt) — 4(dQ/dr)' ™' + (dQ/dr)' ™ **
dart ]~ 24t
d-9Q1_24Qr—m+22Q:ﬁ2Ar_8Q.'—3A:+ szddr

445
(18)

The latter is obtained by a second application of the first
derivative to (. An alternate four-point difference for the
second derivative is given by

(19)

dZQ I_2Qli5Ql—dr+4Qly2Ar7Qr—3Ar
(dﬁ) B A4 :

The charge on the capacitor is not known at #. Combining
Egs. (16}-(18), we obtain

V() + @, — Dy — K

= , 20
0 - (20)
where
K1=alQl—Al_*_szQf—Zdr+a3Q1—3A1+a4Q1—4dr’
. _9£+3£+1
442 24
L R
= —6-———2_
1 412 T ar
(21)
L UL 1R
272 47 T 2240
L
=g
1 L
=3 ar

Combining the potential equation results, Eqs. {6)(9),
with the circuit equation resuits, Eqs. (20) and (21), using
the boundary condition, Eq. (14), we obtain the self-consis-
tent field solution matrix for the voltage-driven series RLC
circuit case. The matrix can still be represented by Eq. (6),
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replacing elements of Eqs. (7)-(9) as follows: In the planar
model,

A4
bo= —1———,
oot
d _’p6+o_f+—dl+ 1 , QIAI+V(I)--KT) (22]
072 T Ax T Adx\ T %o '
In the cylindrical model,
Ar
b= —r; - ———
LA TCR o——
"= v Fo
do="00 Pot 0% (23)
Vinn—K'
T Y e Lo 1}
+2:zh Ar( oy~ € + o )
In the spherical model,
Ar
by= —rt, ———,
0 Fip Areag
do=("f/2—"(3))n0ro+3"(2)a’+_m (24)
3 ; . ar V(t}—K’)
+4TI( cony Q + ao b

Here, A is area of the planar electrodes and 4 is axial length
of the cylindrical system. The solution is then self-consistent
and second-order accurate for the general circuit case. The
matrix can be solved using any algorithm optimized for
tridiagonal matrices [31.

3.2. Open Circuit (Floating Outer Electrode)

When C -0, the impedance of the external circuit
approaches infinity, becoming an open circuit. The poten-
tials on the boundaries are floating; no circuit solution is
required since there is no external current. The surface
charges on the electrodes influence the potential as always,
but the electrodes cannot exchange charge via external
current. In this case, the field solution is given by
Eqgs. (6)-(9), with -

(25)

to_ r— A2 I
g, =0, +Qco:w'

3.3. Short-Circuit

When R=L=0 and C— oo, the external circuit is a
short, with

D, — D, = V(1) (26)
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The short-circuit case is applied in practice when

planar
C
— > 10°
oA /1> X (27a)
cylindrical
< i0° 27b
Inchjin(r, ) (27b)
and spherical
C
> 107, (27c)

4n£rncr0/(rnc - l'.0)

where { is the length of the planar plasma region.
The field solution is still given by Egs. (6)-(9), with

a1=bD=C0=d0=0 (28)
and
planar
V{t}
d,=p! -—j(ﬂ—, (29a)
cylindrical
v
di=rp! _rl,zf(r}’ (29b)
and spherical
r, Vi)
d1=("g/2_r§/2)ﬂr1—_lg_- {29¢)

f

Equation (28) eliminates the first row of Eq. (6} In
Eq. (29), f depends on the model as given in Egs. (7){9).
Note that the wall charge is no longer required to solve the
potential equation. Wall charge is found using Eq. (5}, once
the potentials have been determined, and the current is
found by finite differencing Eq. (15),

r__ 11— dr
I"""2=A(Jm,,v+———a - ) (30)

At

Determining the current in this way produces a noisy result
as discussed above; however, with a short between the
electrodes, we expect large currents with rapid changes since
potential differences cannot exist along an ideal conductor.
Note that here [ is only a diagnostic quantity, so the time-
centering is not a problem.

3.4. Current-Driven Circuit

The final case is the current-driven external circuit. An
ideal current source is assumed which can drive the specified
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time-varying current f(¢). The external circuit elements R,
L, and C are ignored since an ideal current source is an
open circuit. Then Eqs. (6)-(9) are applied with the wall
charge found by finite differencing Eq. (15) for diagnostic
purposes.

3.5, Initial Conditions

The multi-point finite difference methods require initial
values for the 0", where n< (. Physically, these values are
used to obtain the desired initial conditions for the circuit
equation, Eq. (16). For example, the initial charge on the
capacitor, @° and the initial current in the external circuit,
1° form a complete set of initial conditions for the differen-
tial equation. However, the finite difference requires five
initial values for  (four for the four-point method). There
are several ways the conditions can be obtained.

The traditional method for starting a multi-point scheme
(second or higher order accurate) is to use a two-point
method (first-order accurate) to obtain the required initial
values. A smaller timestep is used with the two-point
method to maintain the same accuracy. This presents a
problem for a PIC code; the time-centered mover is
initialized such that positions are known at integral
timesteps, while velocities are known at half timesteps [27.
Thus, it is difficult to switch to a new 4t and maintain the
time centering. Also, switching schemes is inefficient from a
coding standpoint. In addition, the stability of the starter
method must be considered in relation to the circuit
parameters R, L, and C.

Another method of initializing the solver is to solve the
circuit equations analyticaily. To do this, we must replace
the plasma by a known impedance. Using the vacuum
capacitance of the plasma region is the obvious choice;
phisically, this means there is no plasma until :=0*, If
plasma is then introduced, the impedance changes abruptly
and the circuit has been conditioned for a different system.
This problem is less severe when the plasma is generated at
a slow rate since the impedance change is gradual.

If the method turns out to be stable, the initial conditions
will be damped regardiess of the value (this includes desired
initial conditions as well as error in the initial conditions).
If the method is unstable, any error in the initial conditions
grows exponentially. If the method is marginally stable, any
error in the initial conditions remains in the solution,
neither growing nor damping.

3.6. Stability

We now explore stability of the circuit equation, Eq. (20).
As is customary for stability analysis [4], we neglect the
driving terms and study the homogeneous circuit equation

d2
148, gL, 2 ¢

31
dr? a C (31)
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We study the stability of the five-point circuit difference,
Egs. (17)-(18), as well as the four-point difference,
Eqgs. (17) and (19).

In the imit of no inductance, L — 0, both methods
produce

24t 4 o4
' ik B r—Ar t=24r _ ()
Q (3+RC) 40 +¢ (32)
Letting Q' = Q%" and £ = e, we obtain
Qt=éQ:—Ar=€2Qr—2m, (33)

where || <1 is required for stability. Here, y and & are
arbitrary complex variables. Then the characteristic
stability equation for Eq. (32) is

E*(34+241/RC)—-4E+1=0. (34)
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FIG. 2. Stability roots in the limit L — 0. Since |¢| < 1 everywhere, the
method is stable. The scheme can only follow the RC time when 41 < RC/2.

®)

10"’1 o

FIG. 3. Magnitude of the three roots of the four point method, whose characteristic equation is Eq. (36). Since for all three roots, |£,251 <1, the

four-point difference method is stable over the range shown.
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The roots are

2+ /1=244RC

3+ 241/RC

{35)

As shown in Fig. 2, both methods are stable in the limit
L — 0 for all positive, real 41/RC.

Now we attack the more difficult general case. The
general characteristic stability equations for the four- and
five-point schemes are respectively

ER43r+1H -G+ 2+ EE+it)—1=0  (36)
E49 + 61, +412)— E324 + 81))
+E3(22421,) -8+ 1=0, (37)
1; > —r— T 0-10
& 11
1} 0
107 1 10“'10
T
(a)
Ju a
& 7 1
1} 10
10" 1 10“’10

()
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where the normalized times are t,=RAY/L and
12=At/\/lz‘. We obtain the roots of Eqs. (36} and (37)
using the Lin-Bairstow method [57], which gives the
complex roots of polynomials. Figures 3 and 4 show the
stability of the four- and five-point methods, respectively,
for a wide range of t, and t,.

3.7, Accuracy

We now consider the accuracy of the circuit solutions.
Both schemes share the same representation of the first
derivative, Eq. (17). Taylor expanding and eliminating
terms, we obtain the truncation error for the first derivative
of a second-order backward Euler scheme:

@ .

dr (3%)

Qr _ A_Il Q[iii]
3 .

1 S iy Sany aaae =yl
|
g . -
1%"“’ _12 10"’10‘0
()
i
L
g 1T
0" 1 w0

(@)

FIG. 4. Magnitude of the four stability roots of the five point method, whose characteristic equation is Eq. (37). Since all four roots, [£, ;. <1,

the five-point difference scheme is stable over the range shown,
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The truncation error for the second derivative using the five
point scheme is given by

2487

sz ” iv
2O -5 o™

di?

(39)

Similarly, the truncation error for the second derivative
using the four-point scheme is given by

114¢

d*Q )
o w7 1v)
12 e

o (40)

In comparison, the second-order scheme in [1] has a
truncation error for the first derivative of 4:7 0“/6 and
412 0™/12 for the second derivative. The latter schemes are
slightly more accurate when the stability criteria described
in Section 1 are met. Note that when the inductive compo-
nent is small, [ 1] switches to a first-order scheme with trun-
cation error given by —d4r 2”/2 and decouples the circuit
solution from the Poisson solution. Lawsen [1] also
proposes a method which corrects for the decay rate of a
capacitor. This method results in a truncation error of
— 417 "/2 at the expense of decoupling the circuit solution
from the Poisson solution and requiring a relaxation step to
apply the boundary conditions.

4. CONCLUSION

A method for the simultaneous solution of the coupled
- potential and external circuit equations for one-dimensional
electrostatic plasma particle simulations is presented. The
method is stable over many orders of magnitude for the
values of the RLC circuit elements and can, in principle, be
extended to arbitrary external circuits.

The method improves on the accuracy and stability of
the scheme of [1] for a large class of problems of current
interest. However, this general improvement comes at the
expense of a slightly reduced accuracy for the case of a
circuit with non-neglible inductance. This is deemed an
acceptable trade-off, especially for simulators interested in
tf discharges and materials processing applications.

The method is implemented in the codes PDPI1 (plasma
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device planar 1 dimension), PDCI {(cylindrical), and PDS1
(spherical) [6]. These codes have been used to simulate
many complete bounded plasma devices [7-127], including
voltage-driven 1f discharges, plasma immersion ion
implantation devices, and Q-machines. The codes have per-
formed reliably, generating many interesting discussions
and discoverics.
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